April 13, 2018
最早的用途之一5Gwill befixed wireless access(FWA), which promises to deliver gigabit internet speeds. FWA can be delivered to homes, apartments and businesses in a fraction of the time and cost of traditional cable/fiber installations. As with any technological advance, FWA brings new design hurdles and technology decisions. Let’s dig into five things to consider when designing FWA systems:
The first decision is whether to use mmWave or sub-6 GHz frequencies for FWA:
Efficient use of frequency range (sub-6 GHz or mmWave) is critical to scaling deployments. The choice for any situation will depend on balancing the goals of speed and coverage.
FWA系统也需要雇用active antenna systems(AAS) and massive MIMO (multiple input/multiple output) to deliver gigabit service.
Learn more about AAS and massive MIMO:How Carrier Networks Will Enable 5G
A third element to consider is the type of beamforming to employ — all-digital or hybrid.
MMWAVE基站应用中最明显的选择是升级当前平台。你可以探索延伸all-digital beamformingmassive MIMO platforms used for sub-6 GHz frequencies, but this isn’t a plug-and-play solution.
An all-digital approach faces these design constraints:
Remember:An array’s size is dependent on:
EIRPis the product of:
To achieve the target EIRP of 75 dBm and beamforming gain, an all-digital solution using today’s technology would need 16 transceivers. This would equal a total power consumption of 440 W. But for outdoor passive-cooled, tower-top electronics, it’s challenging to thermally manage more than 300 W from the RF subsystem. We need new technological solutions.
具有数字预失真(DPD)的高效GaN Doherty PA可以提供所需的余量,但这些设备仍在开发MMWAVE应用。但在我们看到全数字波束成形解决方案之前,它不会很久。一些发展将使它成为现实:
An alternative ishybrid beamforming,其中预编码和组合在基带和RF前端模块(FEM)区域中完成。通过减少RF链和模数和数模转换器的总数,混合波束形成实现了与数字波束成形相似的性能,同时节省了功率并降低了复杂性。
Another advantage of the hybrid approach is the ability to meet both a suburban fixed or limited scan range (<20º) and dense urban deployments with wide scan ranges in both azimuth (~120°) and elevation (~90°).
底线:全数字和混合方法都具有优缺点。我们认为混合方法是更具吸引力和今天可行的可行性,但地平线上的新产品可以使未来的全数字方法同样吸引人。
您选择FWA前端的技术取决于系统的EIRP,天线增益和噪声系数(NF)需求。所有都是波束成形增益的功能,这是阵列大小的函数。今天,您可以选择SiGe或GaN前端以实现所需的系统需求。
In the U.S., the Federal Communications Commission (FCC) has set high EIRP limits for 28 GHz and 39 GHz spectrum, as shown in the following table.
为了实现具有均匀矩形阵列的75 dBm eirp,随着元素数量的增加(即,波束成形增益增加),每个通道所需的PA功率输出减少了。如下图所示,随着阵列大小变得非常大(> 512有源元件),每个元素的输出功率变小以使用SiGe Pa,然后可以将其集成到核心波束形成器RFIC中。
从下表中可以看出,SiGe PA可以使用1024个活动通道实现65 dBm eirp。然而,通过使用GaN技术的前端,可以通过16倍的通道实现相同的EIRP。
A GaN FWA front end provides other benefits:
外带:在无线基础设施应用中,可靠性是必要的,因为设备必须持续至少10年。对于FWA,GaN是比SiGe更好的选择,可靠性,成本,较低的功耗和阵列尺寸。
最后一次考虑正在选择在现实世界应用中使用的产品解决方案。若干射频公司定位以支持Sub-6 GHz和CMWave / MMWAVE FWA基础设施的开发。例如,Qorvo已经为许多第1层和第2层供应商现场试验提供产品。跨越RF行业,FWA的产品的例子包括:
Additionally, in the 5G infrastructure space, several things are a must:
To support these trends, Qorvo has created integrated transmit and receive modules for cmWave/mmWave, as well as integrated GaN FEMs. These integrated modules include a PA, switch and LNA, and have high gain to drive the core beamformer RFICs. To meet the infrastructure passive-cooling specification, we use GaN-on-SiC to support the higher junction temperature.
For more information on Qorvo solutions for FWA, click on the images below or visit our5G Infrastructurepage, where you'll find product details and interactive block diagrams.
了解有关这些产品的更多信息:
FWA implementation has begun, and full commercialization is approaching rapidly. Today, we believe hybrid beamforming is the best approach. Additionally, GaN, along with SiGe core beamforming, meets FCC EIRP targets of 75 dBm / 100 MHz base station targets. This approach also minimizes cost, complexity, size and power dissipation.
For more information on application-specific components, visit Qorvo’s5G Infrastructure在线解决方案。同时对大l guidance and applications support, please visit our118金宝app
information.
Read recent articles from Qorvo experts:
Have another topic that you would like Qorvo experts to cover?Email your suggestions to theQorvo Blog team它可以在即将到来的帖子中得到特色。请在电子邮件正文中包含您的联系信息。