October 5, 2020

    Connected Devices Illustration

    一个ntenna designers face a multitude of challenges with mobile handsets: the ever-increasing band coverage requirements, challenging industry design constraints, and the continually shrinking amount of real estate left to fit antennas. By using aperture and impedance tuners, designers can tackle these issues. However, not just any aperture or impedance tuner can be used. Many applications today require a more robust, reliable tuning product to fully meet design needs.

    阻抗匹配与射频电压

    设计师经常遇到的一个挑战是天线上的射频能量。例如,与天线的阻抗匹配可以在匹配网络上产生高RF电压。当匹配到高电容或电感的阻抗时,匹配网络和天线之间可能会出现较大的差分电压。当使用较低额定电压设备时,这会导致系统性能下降。为了减轻这种退化,需要使用高电压额定阻抗匹配装置。使用这些类型的阻抗匹配设备是必不可少的,以承受射频电压水平的增加。图1说明了在高(GSM850/900)功率电平下传输时可以看到的射频电压电平。

    Magnitudes of Voltage at GSM Power Levels Infographic
    图1。

    近距离观察天线阻抗

    若干因素,如应用和天线设计,可以影响天线上看到的电压电平。其中三个因素包括:

    1. 匹配装置的天线阻抗可能导致高电压
    2. 应用中的输入功率电平(即功率等级2(PC2)或GSM)
    3. 实际匹配设备的阻抗

    通过这三个因素,让我们仔细看看我们如何使用天线模式和天线调谐器来优化我们的天线设计。

    深入了解阻抗匹配

    Impedance matching devices affect power levels and require higher rated voltage level devices to optimize antenna efficiency.

    下面的图2显示了两个天线设计 - 模式A和B.在以下段落中,我们将描述这些模式如何与不同电压额定值的阻抗匹配组件交互。我们还将展示更高额定设备如何有助于最大化总辐射效率。

    天线图案图
    图2。

    To begin, in Figure 3 below, we see how the antenna pattern “A” and “B” measure on a Smith Chart over low band GSM frequencies. As shown, the antenna impedance lies in the inductive region of the Smith Chart, making a series capacitor an optimal matching solution. Thus, our antenna matching solution will use a capacitor.

    低频带上行链路频率的天线阻抗图
    图3。

    In our example, two similar devices shown in Figure 4 to the left were measured and compared as impedance matching applications to the antenna. One was rated for 55VRF (DEVICE55) and the other for 65VRF (DEVICE65). Each device is comprised of a programmable capacitor capable of 32 unique states of capacitance, as well as an independent toggleable switch.

    Diagram of Antenna Patterns with Capacitive Impedance Tuner
    图4。

    选择每个设备的状态以使天线图案A跨越低频带频率领域的辐射效率。另外,选择设备状态以粘附到每个器件的额定RF电压:55VRF用于设备65的装置55和65VRF,如下图所示。在GSM850 / 900以及LTE B12(带12)中测试了器件。下面的测量图(图5)示出了与这两个设备接口的天线的效率对频率图。

    Graph of Frequency vs Efficiency for the Pattern 'A' Antenna
    图5。

    上述输出测量利用用于两个装置55和装置65的天线图案“A”。如图所示,如果使用下部55伏设备,则在GSM850和GSM900 TX频率中效率很大。为了在保持电压的同时在GSM850,GSM900和B12上实现更好的效率,应选择DEVICE65的电压,因为效率超过了DEVICE55的效率。

    To improve the DEVICE55 response, we attempted to use pattern “B” antenna design. The output measurement chart below shows pattern “A” using DEVICE65. For DEVICE55 we used pattern “B”. Although DEVICE55 does improve using the pattern “B” antenna design in GSM frequencies, it still does not improve enough to meet the DEVICE65 component. As shown in Figure 6, DEVICE65 efficiency once again exceeds that of DEVICE55. This is attributed to DEVICE65’s ability to meet the higher RF voltage input impedance.

    Graph of Frequency vs Efficiency for DEVICE65 and DEVICE55
    Figure 6.

    另外,利用模式“B”,使用设备55的效率没有模式“A”与设备65配对时的效率高或宽带,特别是在B12频率范围。尽管使用模式“B”时,设备55确实显示出一些改进,但使用设备65时,设备55的效率不如模式“A”。

    总之,天线上的高电压确实会影响效率和性能。我们的测量证实,更高的额定电压设备允许更大的能力时,阻抗匹配应用与高射频电压。在我们的示例中,我们使用了两个Qorvo可配置调谐器,每个调谐器由一个开关和可编程电容阵列(PAC)组成,一个设备的额定电压为55Vp,另一个设备的额定电压为65Vp。更高的额定组件为天线设计者提供了更多的空间。反过来,这允许系统设计者更有效地将电路与多个天线方向图和射频电压场景匹配,而无需修改设计布局结构。

    有其他主题,您希望Qorvo专家涵盖吗?将您的建议发送给您的建议Qorvo博客teamand it could be featured in an upcoming post. Please include your contact information in the body of the email.

    浏览Qorvo博客

    一个bout the Author

    Qorvo博客团队和昵称

    One part technical, one part content, and one part strategic, our team is dedicated to connecting you with helpful, timely insights from some of the bright minds at Qorvo. A special thanks to Nick Fields, Qorvo Senior Applications Engineer, who contributed to this blog post.